org.apache.spark.ml.evaluation
MulticlassClassificationEvaluator
Companion object MulticlassClassificationEvaluator
class MulticlassClassificationEvaluator extends Evaluator with HasPredictionCol with HasLabelCol with HasWeightCol with HasProbabilityCol with DefaultParamsWritable
Evaluator for multiclass classification, which expects input columns: prediction, label, weight (optional) and probability (only for logLoss).
- Annotations
- @Since( "1.5.0" )
- Source
- MulticlassClassificationEvaluator.scala
- Grouped
- Alphabetic
- By Inheritance
- MulticlassClassificationEvaluator
- DefaultParamsWritable
- MLWritable
- HasProbabilityCol
- HasWeightCol
- HasLabelCol
- HasPredictionCol
- Evaluator
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
-
final
val
beta: DoubleParam
The beta value, which controls precision vs recall weighting, used in
"weightedFMeasure"
,"fMeasureByLabel"
.The beta value, which controls precision vs recall weighting, used in
"weightedFMeasure"
,"fMeasureByLabel"
. Must be greater than 0. The default value is 1.- Annotations
- @Since( "3.0.0" )
-
final
val
eps: DoubleParam
param for eps.
param for eps. log-loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). Must be in range (0, 0.5). The default value is 1e-15.
- Annotations
- @Since( "3.0.0" )
-
final
val
labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
-
final
val
metricLabel: DoubleParam
The class whose metric will be computed in
"truePositiveRateByLabel"
,"falsePositiveRateByLabel"
,"precisionByLabel"
,"recallByLabel"
,"fMeasureByLabel"
.The class whose metric will be computed in
"truePositiveRateByLabel"
,"falsePositiveRateByLabel"
,"precisionByLabel"
,"recallByLabel"
,"fMeasureByLabel"
. Must be greater than or equal to 0. The default value is 0.- Annotations
- @Since( "3.0.0" )
-
val
metricName: Param[String]
param for metric name in evaluation (supports
"f1"
(default),"accuracy"
,"weightedPrecision"
,"weightedRecall"
,"weightedTruePositiveRate"
,"weightedFalsePositiveRate"
,"weightedFMeasure"
,"truePositiveRateByLabel"
,"falsePositiveRateByLabel"
,"precisionByLabel"
,"recallByLabel"
,"fMeasureByLabel"
,"logLoss"
,"hammingLoss"
)param for metric name in evaluation (supports
"f1"
(default),"accuracy"
,"weightedPrecision"
,"weightedRecall"
,"weightedTruePositiveRate"
,"weightedFalsePositiveRate"
,"weightedFMeasure"
,"truePositiveRateByLabel"
,"falsePositiveRateByLabel"
,"precisionByLabel"
,"recallByLabel"
,"fMeasureByLabel"
,"logLoss"
,"hammingLoss"
)- Annotations
- @Since( "1.5.0" )
-
final
val
predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
-
final
val
probabilityCol: Param[String]
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
- HasProbabilityCol
-
final
val
weightCol: Param[String]
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
- HasWeightCol
Members
-
final
def
clear(param: Param[_]): MulticlassClassificationEvaluator.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
-
def
copy(extra: ParamMap): MulticlassClassificationEvaluator
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- MulticlassClassificationEvaluator → Evaluator → Params
- Annotations
- @Since( "1.5.0" )
-
def
evaluate(dataset: Dataset[_]): Double
Evaluates model output and returns a scalar metric.
Evaluates model output and returns a scalar metric. The value of isLargerBetter specifies whether larger values are better.
- dataset
a dataset that contains labels/observations and predictions.
- returns
metric
- Definition Classes
- MulticlassClassificationEvaluator → Evaluator
- Annotations
- @Since( "2.0.0" )
-
def
evaluate(dataset: Dataset[_], paramMap: ParamMap): Double
Evaluates model output and returns a scalar metric.
Evaluates model output and returns a scalar metric. The value of isLargerBetter specifies whether larger values are better.
- dataset
a dataset that contains labels/observations and predictions.
- paramMap
parameter map that specifies the input columns and output metrics
- returns
metric
- Definition Classes
- Evaluator
- Annotations
- @Since( "2.0.0" )
-
def
explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
-
def
explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
-
final
def
get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
-
final
def
getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
-
def
getMetrics(dataset: Dataset[_]): MulticlassMetrics
Get a MulticlassMetrics, which can be used to get multiclass classification metrics such as accuracy, weightedPrecision, etc.
Get a MulticlassMetrics, which can be used to get multiclass classification metrics such as accuracy, weightedPrecision, etc.
- dataset
a dataset that contains labels/observations and predictions.
- returns
MulticlassMetrics
- Annotations
- @Since( "3.1.0" )
-
final
def
getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
-
final
def
isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
-
def
isLargerBetter: Boolean
Indicates whether the metric returned by
evaluate
should be maximized (true, default) or minimized (false).Indicates whether the metric returned by
evaluate
should be maximized (true, default) or minimized (false). A given evaluator may support multiple metrics which may be maximized or minimized.- Definition Classes
- MulticlassClassificationEvaluator → Evaluator
- Annotations
- @Since( "1.5.0" )
-
final
def
isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
-
lazy val
params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
-
def
save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set[T](param: Param[T], value: T): MulticlassClassificationEvaluator.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
-
def
toString(): String
- Definition Classes
- MulticlassClassificationEvaluator → Identifiable → AnyRef → Any
- Annotations
- @Since( "3.0.0" )
-
val
uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- MulticlassClassificationEvaluator → Identifiable
- Annotations
- @Since( "1.5.0" )
-
def
write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Parameter setters
-
def
setBeta(value: Double): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "3.0.0" )
-
def
setEps(value: Double): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "3.0.0" )
-
def
setLabelCol(value: String): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "1.5.0" )
-
def
setMetricLabel(value: Double): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "3.0.0" )
-
def
setMetricName(value: String): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "1.5.0" )
-
def
setPredictionCol(value: String): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "1.5.0" )
-
def
setProbabilityCol(value: String): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "3.0.0" )
-
def
setWeightCol(value: String): MulticlassClassificationEvaluator.this.type
- Annotations
- @Since( "3.0.0" )
Parameter getters
-
def
getBeta: Double
- Annotations
- @Since( "3.0.0" )
-
def
getEps: Double
- Annotations
- @Since( "3.0.0" )
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
def
getMetricLabel: Double
- Annotations
- @Since( "3.0.0" )
-
def
getMetricName: String
- Annotations
- @Since( "1.5.0" )
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
-
final
def
getWeightCol: String
- Definition Classes
- HasWeightCol